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Thermodynamics of magnetohydrodynamic flows with axial symmetry
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We present strategies based upon optimization principles in the case of the axisymmetric equations of
magnetohydrodynamio®/HD). We derive the equilibrium state by using a minimum energy principle under
the constraints of the MHD axisymmetric equations. We also propose a numerical algorithm based on a
maximum energy dissipation principle to compute in a consistent way the nonlinearly dynamically stable
equilibrium states. Then, we develop the statistical mechanics of such flows and recover the same equilibrium
states giving a justification of the minimum energy principle. We find that fluctuations obey a Gaussian shape
and we make the link between the conservation of the Casimirs on the coarse-grained scale and the process of
energy dissipation. We contrast these results with those of two-dimensional hydrodynamical turbulence where
the equilibrium state maximizesta function at fixed energy and circulation and where the fluctuations are
nonuniversal.
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I. INTRODUCTION vided by Robert and Sommeiji&] and Miller et al.[8] who

Th t f tw . tal fluid d independently introduced a discretization of the vorticity in a
e recent success o 0 expenmental fiuld dynamogqain number of levels to account for the continuous nature

[1,2] has renewed the interest in the mechanism of dynamgs \gricity. Using the maximum entropy formalism of sta-
saturation, and thus of equilibrium configurations in magnesistical mechanic$9], it is then possible to give the shape of
tohydrodynamicSMHD). At the present time, there is N0 the (metgequilibrium solution of Euler’s equation as well as
general theory to tackle this problem, besides dimensionghe fine-grained fluctuations around10]. This is similar to
theory. For example, in a conducting fluid with typical ve- Lynden-Bell's theory of violent relaxatiofil1] in stellar dy-
locity V, density p, Reynolds number Re, and magnetic namics(see Chavani§l2] for a description of the analogy
Prandtl number Pm, the typical level of magnetic fieldbetween 2D vortices and stellar syst¢m$he predictive
reached at saturation is necessaf8y power of the statistical theory is, however, limited by the

5 > existence of an infinite number of constants, the Casimirs,

B”= uopV-f(Re,Pm, (D) which appears due to the particle-relabeling symmEgtg}:

wheref is a priori an arbitrary function of Re and Pm. Many When going from the Lagrangian formulatidor Hamil-
numerical simulation§4] lead tof=1, i.e., equipartition be- tonian which is the most relevant approach from the statisti-
tween the magnetic and turbulent energy. This is therefor§2! mechanics point of viewto the Eulerian onéwhich is
often taken as a working tool in astrophysical or geophysica‘ 1€ S'TﬁleSt formu:canontrl:ro_m.tt_h?a ﬂu'.?. mec?"’;ﬂ'c‘?‘l pgmt of
application. However, this resu_lt is far from _applying_ to any ;’Igé\g is (Iaog:ez;?g){héo[r)grti;em::; %%S:Q?)gfeg in ?11aur1ly S\ZES
s_aturated dy“amo- M(_)reover, it does not give any informay rom Noether’s theorem, this invariance is associated to the
tion about possible anisotropy of the saturated field. It woul orticity conservation and a Casimir is the integral of any
therefore be interesting to build robust algorithms to derivef

the functionf. By robust laorith hich d d unction of the vorticity. The existence of this infinite set of
€ functiont. by robust, we mean algonthms which depend . qtants precludes the finding of a universal distribution of
on characteristic global quantities of the systéike total

: s fluctuations. In addition, the metaequilibrium state strongly
energy but not _necessarlly on small-scale dissipation, Ordepends on thdetailsof the initial condition, not simply on
boundgry con_dmons. . o . . the robust constraints such as circulation and energy. In cer-
. An Interesting candidate in this regard IS provided .by St@iain occasions, for instance when the flow is forced at small
t!st!cal mechanlps. In the case of pure fluid mechamcg, Staécales, it may be more relevant to fix a prior distribution of
tistical mechanics has mainly been developed within th‘?/orticity fluctuations instead of the Casimir4]. Then, the

f(;ame of guler eéquatt')n f(')li a _two-dm'éer;su;nal _pfrfeci_ﬂu'd'coarse—grained flow maximizes a “generalized” entropy func-
nsager{5] used a Hamiltonian model of point vortices. tional determined by the prior distribution of vorticity

Within this framework, two-dimension&2D) turbulence is a 5,16 This approach may be particularly useful in the case

sta?a of nfetghanve temperlgsatu':re tlﬁadl_ng to the cc;alescence E’ complex flows when there is a balance between forcing
vortices of the same sidi]. Further improvement was pro- and dissipation at small scales. The situation is quite differ-

ent in the case of MHD flows. The statistical mechanics of
MHD flows has been recently explored by Jordan and Turk-
*Electronic address: nicolas.leprovost@cea.fr ington [17] in two dimensions. In contrast with nonmagne-
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tized 2D hydrodynamics they obtainediniversalGaussian When considering energy methods, we shall introduce al-
shape for the fluctuations. This comes from the fact that théernate fields, built upon the poloidal and toroidal decompo-
Casimirs in the MHD case are integral quantities of thesition. They arer,=rU, a,=rA, &,=w/r, and&,=B/r, where
primitive velocity and magnetic fields and thus, in the con-w is the toroidal part of the vorticity field. In these variables,
tinuum limit, have vanishing fluctuations. Therefore they dothe ideal incompressible MHD equatiof® become, in the
not alter the Gaussian distribution of fluctuations which isaxisymmetric approximation, a set of four scalar equations:
due to the quadratic nature of energy. _

The pure 2D situation, however, seldom applies to astro- b+ {¢h0p} =0, (4)
physical or geophysical flows. In this respect, it is interesting
to develop statistical mechanics of systems closer to natural A+ { &) = {Ub,ﬂ},
situations, albeit sufficiently simple so that the already well 2y
tested recipes of statistical mechanics apply. These require-
ments are met by flows with axial symmetry. Most natural doy +{,out ={on, 2yép},
objects are rotating, selecting this peculiar symmetry. More-
over, upon shifting from 2D to axisymmetric flows, one o’
mainly shifts from a translation invariance along one axis, déu+ i &ut = 0, 4_y2
toward a rotation invariance along one axis. Apart from im-
portant physical consequences which need to be taken intwhere the fields are function of the axial coordinatnd the
account(for example, conservation of angular momentummodified radial coordinatg=r2/2 and ¢ is a stream func-
instead of vorticity or momentum, curvature tepmihis in-  tion: U,=V X (i/rey). We have introduced a Poisson
duces a similarity between the two systems which enables Bracket: {f,g}=4,fd,9-d,fd,g. We also defined a pseudo-
natural adaptation of the 2D case to the axisymmetric casé.aplacian in the new coordinates:

- gﬁ) - {Ub!A*o-b}a

This is shown in the present paper, where we recover the P 1R
Gaussian shape of the fluctuations and make the link be- A==+ ——. (5)
tween the conservation of the Casimirs on the coarse-grained o> 2yit
scale and the process of energy dissipation. Following Jordan and Turkingtof17], we will make an in-

In the first part of the paper, we study the equilibrium tensjye use of the operatoffer more details, see the Appen-
shape by using a minimum energy principle under the congjix): curl which gives the toroidal part of the curl of any
straints of the MHD axisymmetric equations. We also pro-yector andCurl which takes a toroidal field as argument and
pose a numerical algorithm based on a maximum energyetyrns the poloidal part of the curl. j=curl B is the toroi-

dissipation principle to compute in a consistent way the equiyg| part of the current angs=r Cur™(U,), the following
librium states. This is similar to the relaxation equation pro-,q|ations hold:

posed by Chavanid 5,16 in 2D hydrodynamics to construct
stable stationary solutions of the Euler equation by maximiz- &=—A¢ and jir=-A.op. (6)
ing the production of & function while conserving the ro-
bust constraintg§energy, circulation,.). Then, we develop
the statistical mechanics of such flows and recover thes
equilibrium states, thereby providing a physical justification
for the minimum energy principle.

Under the shapé4), the ideal axisymmetric MHD equations
of motion lead to the immediate identification @=rA as a
€onserved guantity associated to axial symmetry. In the
MHD case, it is thus the magnetic potential which plays the
role of vorticity in the hydrodynamical case. The Casimirs
Il. MHD FLOWS WITH AXIAL SYMMETRY will thus be functions of this conserved quantity as we now

show.
A. Equations and notations

Consider the ideal incompressible MHD equations: B. Conservation laws

1. General case

1
qU+U-V)U==--VP+(V XB)XB, The whole set of conservation laws of the axisymmetric
P ideal MHD equations have been derived by Wolfj&8]:
4B+(U-V)B=(B-V)U, 2 1 2
B+ 8= ) — @ E:‘f{fulﬂ‘ﬂ'bA*U'b‘*ﬁ"'zyfg}dde (7)
whereU is the fluid velocity,P is the pressure|pugB is the 2 2y

magnetic field, ang is the (constank fluid density. In the
axisymmetric case we consider, it is convenient to introduce - f
the poloidal/toroidal decomposition for the fieldsand B: Hn=2 | &N(op)dydz
U=U,+U;=U,+Ue, ©)]
He= f {F(Ub)gu + ngbF,(o'b)}dde.
B=B,+B;=V X (Aey) + Bey,

where A=A, +Ag, is the potential vector. This decomposi-
tion will be used in our statistical mechanics approach. [ =J C(op)dydz
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B
L=fo-uG(o-b)dydz, Hr’n=2f §bdydz=f ?dx,

whereC, N, F, andG are arbitrary functions. One can check

that these integrals are indeed constants of motion by using sz auG(ob)dydz=J r’UBdx,

Eqg. (4) and the following boundary conditions;,=o,=¢§,

=§,=0 on the domain frontier. To prove the constancy of the

third integral, one has to assume thg0)=0. The reader, L B

familiar with the three “classical invariants,” namely, the en- L"= | oydydz= | rUdx.

ergy, the magnetic helicity and the cross helicity, may be R _
surprised to see here five sétsur of them infinitg of con- ~ Apart from the angular momentuid, it is difficult to give
stants of motion. First let us argue about the appearance &Y Physical interpretation for the other quantities. The class
the two families which are not classicaly taken into accountOf invariant! is called the Casimirs of the syste(if one

As stated above, the Casimireppear because of the mag- defines a nonca}nonlcal bracket for the 'Hamlltonlan system,
netic potential conservation which is itself linked with the they commute, in the bracket sense, will all other function-
particle-relabeling symmetrj13]. On the other hand, the als)._ Th_e conservation Iaws_ _found by Woltjer are mere gen-
angular momentum conservatidast line withG=1) is con-  eralizations of these quantities.

served because of the axial symmetry. Second, one can easily

see that iff[H(oy,&,,&,)dydzis a conserved quantity, then C. Formal nonlinear dynamical stability

for every F, [H(oy,&,,&)F(op)dydzis also a conserved
quantity because of the conservation @f. Therefore the
introduction of the axial symmetry transforms the usual in- Following Woltjer[18], we show that the extremization of
variants into families of invariants. The interpretation of energy at fixed, Hy, Hc, andL determines the general form
these integrals of motion is easier when considering a speci@f stationary solutions of the MHD equations. We argue that

1. General case

case, introduced by Chandrasekhb®]. the solutions thaminimizethe energy are nonlinearly dy-
namically stable for the inviscid equations.
2. Chandrasekhar model To make the minimization, we first note that each integral

is equivalent to an infinite set of constraints. Following

The conservation laws take a simpler shape when on@qier we introduce a complete set of functions and label
considers only linear and quadratic conservation laws, Sucfjeqe functions and the corresponding integrals with an index
that N(ay) =F(0p)=G(op) =0, and N(ap)=G(op)=1. The  , "Then introducing Lagrange multipliers for each con-
caseF(o,) =1 is forbidden by the requirement thiatshould  gyaint to first order, the variational problem takes the form
vanish at the origir{see abovg In that case, the set of con-
served quantities can be split in two families. The first one is -
made up with conserved quantities of the ideal MHD system, 9E+ 2 {a™81® + u sHE + uV sH + ¥V 5L ™} = 0.
irrespective of the geometry: n=t

(10
Hp= 2[ gbgbdde:fA .Bdx = 2f ABdX, (8) Taking the variations omwr, &, o, and§,, we find
Avop=—F'(0p) A+ F' (o) 0y + G/ (0,) 0y

+ 2N (op) &, + C'(0y), (1)

Hc:f{abgu"'o'ugb}ddeZJ U - Bdx,
2yé,=— 2N(0y,) — F'(op) oy,

1 aﬁ 2
E= 2 J {§u¢_ o 5/ * 2y§b}dydz g—; =-F'(op) &, — Gloy),

1
== | (U?+BYdx,
;| e W=-Fay),
—yte () i
whereH,, is the magnetic helicityH, is the cross helicity, Where we have se(ay) =2 Zou " Fn(op) and similar nota-
andE is the total energy. Note that due to the Lorentz force lONS for the other functions. This is the general solution of
the kinetic helicity is not conserved, unlike in the pure hy-the incompressible axisymmetric ideal MHD probl¢as].
drodynamical case. The other family of conserved quantitied? the general case, it is possible to express the threedigld

is made of the particular integrals of motion which appearéu @ndé, in terms ofay,. Then the first equation of the above
due toaxisymmetry system leads a partial differential equation feg to be

solved to find the equilibrium distribution. Note that the ex-
tremization of the “free energyd=E+al+ u Hpnt+pcHe
| :J C(Ub)dydzzf C(rA)dx, (90 +1L yields the same equations as Efjl). Differences will
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appear on second-order variations as we discuss below. - 2,U«§1 )
If we consider a purely magnetic case by takifigG (1= pe) Avop=P(ay) = Y +29%y oy = 2yy'y
=0, we get
2tmfhy
N(a,)N’ B (16)
Aoy = C (o) — 2N N(00) y
y
These expressions can be used to prove that these fields are
£ N(a,) U=0 (17  Stationary solutions of the axisymmetric MHD equations. We
b y ' now turn to the stability problem. Since the functiodaE

) o ) o +al + pupHn+ ucHe+ yL is conserved by the ideal dynamics,
This equation is obtained by minimizing the ener@y 3 minimum ofJ will be nonlinearly dynamically stable in the
=3/ (U+B?dx while conserving the generalized magnetic formal sense of Holmet al.[22]. Note that this implication is
helicity H,=2f(B/r)N(rA)dx and the Casimirs |  not trivial because the system under study is dimensionally
=[C(rA)dx. It can be therefore seen as a Grad-Shafranoinfinite. We admit that their analysis can be generalized to
equation(p. 30 in Ref.[20]). The LaplacianA: used in the present context. Since the integrals which appear in the
Biskamp’s book is related to ours by the following relation; functional J are conserved individually, a minimum of en-
Al=r?A.. If we take, furthermoreN(oy,) = umo, and C(op) ergy at fixed other constraints also determines a nonlinearly
=Koy, we get dynamically stable stationary solution of the MHD equa-
tions. This second stability criterion is more refined than the
first (it includes i). We shall not prove these results, nor
write the second order variations, here. We refer to Htis
al. [14] for a precise discussion in the related context of 2D

hydrodynamical flows.
Op . .
&=—pum—, U=0. (13 If we ignore the conservation of angular moment(sn
=v'=0) and the conservation ¢/, («,,=0), we get

A*O’b: K- 2#%%,

With K=0, we obtain the so-called Beltrami equation. It
minimizes the energyE=3 [ (U?+B?)dx while conserving
the magnetic helicityH,=/B-Adx. This variational prin-
ciple was suggested by Tayl®1]. In vectorial form it leads
to VX B=-2u,B. If we account also for the conservation of
lo=/rAdx, we get Eq.(13).

2/,L2
(1- /.Lg)zA*O'b =d(oyp) - Tmab,

b=—7 >, U=-udB. (17)
2. Chandrasekhar model

In the Chandrasekhar model, the arbitrary functions are
most linear functions ofoy: N(op)=umop+u,, Flop)
= ucop and G(o,)=yop+7y'. Thus the stationary profile in
the Chandrasekhar model is given by

ah that case, the velocity and the magnetic field are aligned
(see also Sec. Il C)1This solution is obtained by minimiz-
ing the energye=3 [ (U2+B?)dx while conserving the mag-
netic helicity H,,=fA -Bdx, the cross helicityH,=fU -Bdx

and the Casimirg=/C(rA)dx. The alignment ofU and B

can be obtained by minimizing the energy at fixed cross he-
licity. This variational principle was suggested by Matthaeus

Avoy == plsth + yo, + 2umép + C' (o), (14

2Yép = = 20um0p — 24k~ HcOy, and Montgomeny23].
g—; == u&y— yo,— v, D. Numerical algorithm to construct stable equilibria

1. General case

V== pcop. It is usually difficult to solve directly the system of Egs.
(15) and(16) and make sure that they ensure a stable station-
ary solution of the MHD equations. Instead, we shall propose
a set of relaxation equations which continuously decreases
the energy while conserving any other integral of motion.
This allows construction of solutions of the systéh%) and

From the previous equations, we obtain

2y(1 = )&y = 2(yieY = ) T + 2ucY'Y = 2l (15)

(1= ud) oy = 2 pettm= Wb+ 24ty = 27, (16) which are energy minima and respect the other con-
straints. A physical justification of this procedure linked to
W= — oy, the dissipation of energy will be given in Sec. Il C 1.
Our relaxation equations can be written under the generic
whereay, is given by the differential equation: form
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1% 1%
Yoy, 18) Buo v 0, VIw+Flan 0l
at ot u
yvherecr_ stands foroy,&,,0, Or &, Using straightforward where we have seIF(crb,t):E’r;foﬂ(c”)(t)Fn(ab) and similar
integration by parts, we then get notations for the other functions. The time evolution of the
. Lagrange multipliersu(c")(t), etc., are obtained by substitut-
| :fJob' V[C'(oy)]dydz (19 ing the optimal currents in the constrair§”=0, etc., and

solving the resulting set of algebraic equations. Using the
_ expression of the optimal currents and the condition that
Hy= ZJ {Jg, - VIN(op)]+ 3y, - VIN'(op)éplidydz, =H,,=H.=L=0, we can show that

JZ J2 2 J2
E:—f By T N TR bgydz<0,  (22)
D D D D
& ay ép

9h

H.= j (e, VIF(op)]+ 3y, - VIF (0p)é+ F'(0p)ots]
, ) provided that the diffusion currenB; , D, , D, and D¢,
5, VIF'(0p)&]+ Ig - VIF'(op)oylidydz are positive. Thus the energy decreases until all the currents
vanish. In that case, we obtain the static equatidis. In
) . addition, this numerical algorithm guarantees that only en-
L= [ {3, VIC(op)]+J, - VG (ap)oylidydz, ergy minimaare reached; maxima or saddle points of energy
are linearly unstabl¢l15]. Note that if we fix the Lagrange
multipliers instead of the constraints, the foregoing relax-
E:f Je V=3, - V(Awop)+3J, - V (@) ation equations lead to a stationary state which minimizes the
u b u 2y “free energy”J. Then, as stated above, the constructed solu-
tions will be nonlinearly dynamical stable solutions of the
+Jg V (2y&,) (dydz MHD §et of equations. prever, forbidding the Lagrange
multipliers to depend on time, we may “miss” some stable

To construct the optimal currents, we rely on a procedure ofolutions of the MHD equations. Indeed, we know that
S T : . minima of the free energyare nonlinearly stable solutions of
maximization of the rate of dissipation of energy This is

S L . X the problem but we do not know if they are the only ones:
similar to the maximization of the production otHafunction P y y

. : ) . some solutions can be minima Bfat fixedl, H,,, H;, andL
used in Refs[15,16] in 2D hydrodynqmlcs. Wg thus maxi- while they are not minima o8=E+al + s H,+ sHe+ L.

mize E given the conservation of=H,=H;=L=0. Such  This is similar to a situation of ensemble inequivalence in
maximization can only have solution for bounded curréifits  thermodynamics; see Refd4,24).
not, the fastest evolution is for infinite current3herefore

we also impose a bound @ where, as beforer stands for 2. Chandrasekhar model
Op €y 0w &0 In the Chandrasekhar modetith u/ =v'=0), the previ-
Writing the variational problem under the form ous equations can be simplified. Furthermore, as the equilib-
+o0 rium solution does not depend on the particular value of the
SE+ S a0 8™ + ™) sHD + 4™t sH™ diffusion coefficientgthese are only multiplicative factors of
E{ ® pim ()9 + e (oM the optimal currenfs we set for simplicityD, =D, =D,
1 (P =Dg =1. The relaxation equations then reduce to
+ ()L} + D) D—a(;") =0 (20 o
b '
T e E = A= Aoy + C' (0, 1) + 2un(t) &y + uc(D) €, + YDy},

and taking variations od,, ,J .J, J¢, We obtain the opti-

mal currents. Inserting their expressions in the relaxation (23
equationg18), we get :
d
oo =2 = A{2yéy + 2100 + (Do),
“r=v D, V[~ Acap + C' (o, t) + 26N’ (0, 1) a
+ EF (0pt) + 0 &oF" (0, t) + G 21 do, o
&F' (o, 1) + 0 &oF" (o, 1) + G/ (op, Doy I}, (21) EU =A{5L; + () &y + 'y(t)ab},
98y _ v ,
e {Dg, V[2y&, + 2N(ap,,t) + F' (a1, ) oy ]}, 9,
— = A{Y+ ue(t) oy},
ot
90y _ V -iD, V [@ +EF (opt) + G(ab,t)] ' where the Lagrange multipliers evolve in time so as to con-
o u' | 2y serve the constrainid9).
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These equations are the MHD counterpart of the relax- Each conserved quantity has a numerical value which can
ation equations proposed by Chavaiis,16| for 2D hydro-  be calculated given the initial condition, or from the detailed
dynamical flows described by the Euler equation. In this conknowledge of the fine-grained fields. The integrals calculated
text, a nonlinearly dynamically stable stationary solution ofwith the coarse-grained quantities are not necessarily con-
the Euler equation maximizesta function at fixed energy served because part of the integral of motion can go into
and circulation. A justification of this procedure, linked to the fine-grained fluctuationé&s we shall see, this is the case for
increase o functions on the coarse-grained scale, will bethe energy in MHD flows This induces a distinction be-
further discussed in Sec. IV and compared with the MHDtween two classes of conserved quantities, according to their
case. behavior through coarse graining. Those which are not af-

fected are called robust, whereas the other one are called

fragile.
I1l. STATISTICAL MECHANICS OF AXISYMMETRIC g

FLOWS B. Constraints

In the previous section, we obtained general equilibrium In this section, it is convenient to come back to the origi-
velocity and magnetic fielgrofilesthrough minimization of nal velocity and magnetic fields. The constraints are the
the energy under constraints. In the present section, we deoarse-grained values of the conserved quanti@@sThe
rive velocity and magnetic fieldistributionusing a thermo-  key point, as noted by Jordan and Turkingtai], is that the
dynamical approach, based upon a statistical mechanics gluantity coming from a spatial integration of one of the
axisymmetric MHD flows. As we later check, the distribu- fieldsu or b is smooth. In our case, it amounts to neglecting
tion we find are such that their mean fields obey the equilibthe fluctuations oA which is spatially integrated frofe and

rium profiles found by energy minimization. For simplicity, write A=A. Thus the coarse-grained values of the conserved
we focus here on the Chandrasekhar model. guantities are given by

A. Definitions and formalism I—=f C(rA_\)dX, (26)

Following Miller [8], Robert[ 7], and Jordan and Turking-
ton [17], we introduce a coarse-graining procedure through - L
the consideration of a length scale under which the details of Hp = zf ABdx,
the fields are irrelevant. The microstates are defined in terms
of all the microscopic possible fieldgx) andb(x). On this
phase space, we define the local distribution of velocity and —
magnetic field p(x,u,b). This forms a macrostate. The chj U - bp(x,u,b)dxdudp,
coarse-grained fielenoted by a bauis determined by the
following relations:

1
E= 5 (u?+b?)p(r,u,b)dxdudb,

U(x) = J up(x,u,b)dudb, (24)
— B
_ Hr’n:2J —dx,
B(x) = J bp(x,u,b)dudb. '
We introduce the mixing entropy L= f AUr2dx,

S{p]=—jp(x,u,b)ln[p(x,u,b)]dxdudb, (25)
; - . Urdx.

which has the form of Shanon’s entropy in information

theory[9,25)]. It is proportional to the logarithm of disorder,

where the disorder is the number of microstates conssteﬂihe constraint is the Casimir, connected to the conservation
with a glven macrostatp(x, u,b). The most probable mac- of o, along the motions. In the present case, it is a robust
rostatep’ (x,u,b) maximizes the entropy subject to the con- quantity as it is conserved on the coarse-grained scale. As
straints. The mathematical ground for such a procedure istated previously, the quantitiés,, He, andE are the mean
that an overwhelming majority of all the possible microstatesvalues of the usual quadratic invariants of ideal MHD,
with the correct values for the constants of motion will be namely the magnetic helicity, the cross helicity, and the en-
close to this statésee Ref[7] for a precise definition of the ergy. On the contrary, the quantitiet,, L, andL’ are spe-
neighborhood of a macrostate and the proof of this concereific to axisymmetric systems. Because these last three con-
tration property. Note that this approach gives not only the servation laws are usually disregarded in classical MHD

coarse-grained fieldU, B) but also the fluctuations around it theory, it is interesting in the sequel to separate the study in
through the distributiom(x,u,b). two cases, according to which the conservatiohlgfL, and
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L'is physically relevan(‘rotating casej or is not physically

relevant(“classical case.

C. Gibbs state

1. Classical case

PHYSICAL REVIEW E 71, 036311(2005

1+|np=—§(u2+b2)—2MmX-b—Mcu b
—curl ™rC’(rA)] - bp. (34)

It is appropriate to writi=U+u’ andb=B+b’ where the

The MHD equations develop a mixing process leading tdirst term denotes the coarse-grained field. Then(&4).can
a metaequilibrium state on the coarse-grained scale. It is o€ rewritten

tained by maximizing the mixing entrop§{p] with respect
to the distributionp at fixedl, H,, H;, andE (we omit the

bars in the following. We have

5S:—f(1+lnp)5pdxdudb,
6chfu - b dpdxdudb,

1
SE= 5 f (u? + b?) Spdxdudb.

The variation of the magnetic helicity and the Casimirs is
more tedious because they involve the coarse-grainedAield

For the magnetic helicity, we have

SHy =2 f (5AB + AsB)dx.

Now, using an integration by parts, it is straightforward to

show that

chAde:féBp-Apdx.

Therefore
=2 | (3B Ap+ABIK=2 [ A oB
= 2f A -bspdxdudb.
Regarding the variation of the Casimirs, we find

Sl =fC’(rK)r5de=JC’(rK)r Curl™ Bpdx

:fcurl‘l[rC’(r;J]-égpdx,
or
dl :fcurl‘l[rc’(rx)] - bpdpdxdudb.

Writing the variational principle in the form
+oo

8S— BOE = pumdHm — pedHe — 2 ™ol =0,
n=1

we find that

(27)

(28)

(29)

(30

(31)

(32)

(33)

N ™

(u/2+b/2)_ u b - __E_ &:UE
Me M

l+lnp=- >
u —  — (B
—<E+U’) '[BU+IU“CB]_(E+b,>

(BB + 2uA + U +curl {rC’'(rA)] . (35)
Hence the fluctuations are Gaussian:
1 B, .,
=—exm — =(u’ +b12_ u’ -b’
P Z p{ 2( )~ Me }
1 1
= zexpy =2 XiAiXi 1, 36
= ZEJ A J} (36)
where we defined a six-dimensional vectorx;
=(uy,Uu;,u3,b;, by, bl). The mean field is given by
BU+ uB =0, (37

BB+ 2upA+ uU=0,

BBp + 2uAp + uUp + curl “rC’(rA)] = 0.

Taking the curl of these relations and using &gkj,
curlUp=w, and curlAp=B, we recover the equilibrium dis-
tribution (14) with y=9'=pu/,=0. Therefore, in this classical
case, the equilibrium profiles are such that mean velocity and
mean magnetic field are aligned. This is a well-known fea-
ture of turbulent MHD, which has been observed in the solar
wind (wherev= £B). It has been linked with a principle of
minimum energy at constant cross helicisee Chap. 7.3 of
Ref.[20] and references therginThis feature is also present
in numerical simulation of decaying 2D MHD turbulence,
where the current and the vorticity are seen to be very much
equal[26]. This can therefore be seen as the mere outcome
of conservation of quadratic integral of motions, and may
provide an interesting general rule about dynamo saturation
in systems where these quadratic constraints are dominant.
Using the Gaussian shape for the fluctuations, it is quite
easy to derive the mean properties of the fluctuations. To do
so, we will make use of the following standard resyi2g]:

Z=(2m)*defA] = 2m)3[B° - uaP?  (xx) = (AY);.
(39
Then, it is easy to show that part of the energy is going into
the fluctuations and that there is equipartition between the

fluctuating parts of the magnetic energy and of the kinetic
energy:
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(U =(p'?= ,BZS—ﬁMZ' (39) exp{— 2,ur’n$ - y'1u - feur "X(r?U) - bp + Kurz]}.

C

One can also calculate the quantity of cross helicity going (44)

into the fluctuations: The distribution of fluctuations is then still Gaussian and
given by Eq.(36) but now the mean-field equations are

3
“Fe (40)
B - u? BUp+ uBp=0, (49

One should notice that there is no net magnetic helicity in the
fluctuations becaus@\ is strictly conserved:(a’-b’')=0.
Then, the fractions of magnetic energy, cross helicity, and
kinetic energy going into the fluctuations are

(02 _ (u'-b) _ 3B

u"-b")y=-
BU+ uB+y'r+yAr?=0,

2 !
BB+ 2unA+ u + = =0,

— —— g MZM‘l, (41)
f B2dx J U - Bdx ¢ BBp + 2unAp + uUp + curl “rC’(rA)] + y curl (r2u)
=0.
(u'?) - /3_2 3B ML Taking the curl of the vectorial relations, we get the system
j T MeBHe (14).

3. Application to the magnetic field of stars

where M=[B%x is the magnetic energy of the coarse- Therefore the relation between the velocity and the mag-
grained field. The first equation shows that there is an equaletic field is not linear anymore, when taking into account
fraction of magnetic energy and cross helicity into the fluc-additional constants of motion. The linearity is only valid for
tuations while the positivity of the magnetic energy requiresthe poloidal component8pUp. The toroidal component
B> Mg. Using this inequality and the second line, we seepbeys

that the fraction of kinetic energy going into the fluctuations

is then bigger than that of the magnetic energy and cross v )

helicity. This gives some mathematical ground to the energy B\U+ Er =~ KB YA (46)
minimization procedure we used in Sec. Il C.

We can interpret& + '/ Br as the relative velocity around a

2. Rotating case solid rotationQ=-9'/B. Indeed,y’ is the Lagrange multi-
The situation changes when the other constants of motioRlier for the angular momentum constraint. The nontrivial
are taken into account. We have term responsible for the departure from linearity igAf>

Thus the breaking of the proportionality between the velocity
b and the magnetic field can be attributed to the conservation
SHp, = 2] —dpdxdudb, (42)  of the angular momentum in the Chandrasekhar model. This
' is an interesting feature because this conservation rule is

likely to be more relevant in rapidly rotating objects. This

) may explain the dynamo saturation in rotating stars, where

oL’ = J uréspdxdudb. linearity between magnetic and velocity field is observed for

slowly rotating stars and is broken for rotator faster than a

On the other hand, certain limit. To illustrate such a behavior, we used astro-

physical datg28] giving the bolometric luminosity, the
- _ - period P, the masaM, and the color indeB-V for a given
oL = f (AU + AdU)r?dx = J (U curl™ 6Bp + AdU)rdx set of stargof the dwarf typé. From this data, an estimate of
the toroidal parts of the magnetic and velocity fields are as
follows.
For the magnetic field, it is done in two steps:

=f(curl‘1(r26) - 8Bp + AdUr2)dx
1. From the value of the color indg®r equivalently the

_ 10T .2 temperaturg we use the Hertzsprung-Russell Diagram to fit
B f (eurl™(r*V) - bp + Aur®) dpdxdudb. (43) the E)/alue of the star radiR in grdergto obtain theg correct
value for the luminosity.
Adding Lagrange multipliers g,, =y, and = for H/,, L, 2. Once we know the radius of the star, we use an em-
andL’, respectively, we find that the expressi@4) is mul-  pirical power law[29] linking the luminosity with the mag-
tiplied by netic flux ®:
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10° ' — — ol = -
s i*f:*:: (9t§u+{‘1’a§u}:<9z<4_;2‘§b2> —{op Ao} =V -3,
A %‘** *
2 : . X:: *;***;: :* . 5 * . .
10 L Lo *i* * *****I . E where the currents take into account the correlations of the
*%g; * A * fine-grained flugtuations. Using a heuristic pri.nc_iple, we pro-
. *‘fﬁg ., pose to determine the currents so as to maximize the rate of
50l *a;,,ﬂ:’:****’* | energy dissipation while conserving the other constraints.
@ b This is similar to the idea of the maximum entropy produc-
o #:*:* H . tion principle of Robert and Sommeid0] in 2D turbulence
LI stating that the evolution toward equilibrium is such that it
10° f.*""* * 5 maximizes the entropy creation under the given constraints.
* .k This is equivalent to say that the evolution toward the equi-
¥ librium state is the fastest. The calculation are exactly the
o . . , same as in Sec. 11D 1 and lead to the system of equations
107 10° 10' 10° 10° (21) in the general case and E®J) in the case of the Chan-
V-Nein drasekhar model with additional advective terms for the

FIG. 1. Magnetic field of stargof late-type dwarfs calculated

coarse-grained quantities. However, the interpretation of the
new system of equations is different from the previous one:

from their x-ray emission and compared to that of the Sun, vs theive obtain here a system of equations for the coarse-grained

rotation velocity divided by that of the Sun.

Lb o @1.15~ (BR2)1.15

(47)

variables, the fine-grained ones being parametrized, in the
relaxation currents, in terms of coarse-grained quantities.
If we set the coarsed-grained part of the velocity field to

zero (Eu=€u=1//=0), we get a system of equations

and thus we calculate the magnetic field from the luminosity.

For the velocity field, we assume that the interior of the star  doy, — = —

is close to a solid body rotation and derive the velocity from "5~ V Dy, VI=Acap + C'(ap,t) + 26N (0p, D 1},
the rotation period: Ux27R/P. In Fig. 1, we have plotted

the magnetic fieldB versus the velocity fieldboth quantity (49)
being expressed in units of the corresponding solar yalue

One sees that the magnetic field is a linear function of the —
velocity field for the slow rotation rate but saturates for the 9% -
higher rotation rate, as predicted by Eg6). Note that the ot
nonproportionality between velocity and magnetic field can

also be due to additional conserved quantities such as tho
considered by Woltjef18].

V {Dg, V[2y&+ 2N(op )1},

ﬁﬁking the poloidal parfo,) and the toroidal par(tgb) of the

D. Relaxation equations

magnetic field. This system of equations relaxes toward the
stationary state described by the Grad-Shafranov equation
(12). Note that we have set theparse-grainedpart of the
velocity field to zero. Thus Eq$49) describe the organiza-

The previous discussion has shown that the energy of thgon of magnetic field by purelfluctuatingvelocity field in
coarse-grained field has the tendency to decrease while thie spirit of a “turbulent dynamo.” In this respect, it may be
other invariants of the inviscid axisymmetric MHD equations of interest to stress the analogies and the differences between
are approximately conserved. Thus the energy is a fragiléne relaxation equation@9) and the mean-field equations of
invariant, while the others are robust. Using this observationMHD dynamo. When considering the effect oflactuating
we build up a system of relaxation equations which providevelocity field (assumed to be isotropion the process of
a small-scale parametrization of axisymmetric MHD turbu-magnetic field generation, see Steenbetkal. [31], the
lence. Coarse graining the axisymmetric MHD equations, wequation for the meartor coarse-grainddmagnetic field is

obtain a system of equations of the form

G +{¥,0p} ==V -J

O'b’

atgb-i-{q,igb}z{;bvﬂ} -V 'ng,

2y

&t;u + {‘P!;u} = {;bizygb} -Vv. ‘](rur

(48)

found to be

dB=V X [a(B)B]- V X[B(B)V X (B)]. (50)

Assuming that the mean magnetic field is axisymmetric, the
foregoing equation can be rewritten with the scalar variables
as

(9_ - _
X = 2ByA. o+ 2y,

P (51)
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&E B . theorem[34] which precludes an axisymmetric magnetic
Shoy | 2y (2y&) —— Voo |. field to grow by dynamo action. In Cowling’s theorem, there
a 2y 2y is viscosity and the magnetic field finally goes to zero. In our

case, the flow is inviscid and the magnetic field is reorga-

The first term in the right-hand side is a turbulémiagneti¢  nized by turbulence, without being dissipated. This gives rise
diffusivity whereas the second one is the so-calledffect to a coherent state, like the one described by the Grad-
which builds up coarse-grained magnetic field from a fluctu-Shafranov equation or by the more general mean-field equa-
ating velocity field. In the case of an axisymmetric meantions derived in Sec. Il C 1. In the presence of a small vis-
magnetic field to which Eqs(51) apply, the coupling be- cosity, these coherent structures would be observed during a
tween the toroidalg,) and poloidal(a,) part of the magnetic  long, transient, stage of the dynamics.
field is proportional to the coefficient. In the “kinematic
approximation,” where the effect of the Lorentz force is ne-
glected, the coefficient is constant and proportional to the
kinetic helicity H,cu’-V Xu' of the fluctuating velocity We have developed a statistical theory of axisymmetric
field. In this sense, it is related to purely hydrodynamicalMHD equations generalizing the 2D approach by Jordan and
variables. However, taking into account the retroaction of therurkington[17]. We derived the velocity and magnetic field
magnetic field on the velocity field, Pouquattal.[32] were  distribution and established the differential equations deter-
able to write a nonlineaw effect as a difference between the mining the equilibrium profiles for the mean flow. Like in the
kinetic and the magnetic helicity spect@:- (Hy—Hy). Itis 2D case, the fluctuations around the mean field are found
interesting to note that the second equation in#8) has a  Gaussian, a universal feature connected to the conservation
structure similar to the second equation in Ef1), espe- of the Casimirs under the coarse graining together with the
cially in the case wheréN(op)=umoy,. In that case, the quadratic nature of energy. The equilibrium profiles are char-
equivalent of thew parameter is the Lagrange multipligy,  acterized by an alignment of the velocity and magnetic field,
associated to the conservation of magnetic helicity. This is amwhich is broken when the angular momentum conservation
important feature that these two systems have in commoris taken into account. The statistical equilibrium profiles are
namely the coupling between the poloidal and the toroidafound to correspond to profiles obtained under minimization
part of the magnetic field is proportional to a quantity linked of energy subject to the constraints. Thus, in the MHD case,
with the magnetic helicity: in Eq(51), the « effect can be in the presence of a coarse grainiiog a small viscosity, the
expressed in terms of the spectrum of the magnetic helicitgnergy is dissipated while the helicity, the angular momen-
(in the nonlinear regimewhereas in Eq(49), u, is the  tum, andthe Casimirs are approximately conservbgtdro-
Lagrange multiplier associated to the conservation of magmagnetic selective decpayln particular, the energy of the
netic helicity. Our relaxation equations therefore recover the.garse-grained field decreasegzéfmd)(¢ %I(Uz
fact that the equilibrium configuration of the coarse—grained+§2)d “E b t of total into fine-
magnetic field is mainly monitored by the magnetic helicity. X=Ecg. DECAuUse part of fotal energy goes nto fi
This is due to the fact that magnetic helicity experiences afgrained fluctuation€g,=E-E. 4. Therefore the metaequi-
inverse cascadérom small to large scal¢sn MHD turbu-  librium state minimizesE. 4 (fragile) at fixedl, Hy, Hc, and
lence as has been shown by Ré&3] and as it is evidenced L (robus}. This can be justified in the “classical cag8ec.
in our study by the fact that there is no net magnetic helicitylll C 1) where we showed that the fraction of kinetic energy
in the fluctuationgsee the end of Sec. 11l )1 going into the fluctuating part of the fields was higher than

It is also of interest to compare the first equation in Egsthat of the other quantities, namely the magnetic energy and
(49) and (51). Despite some analogies, these two equationghe cross helicity. The “rotating caseSec. Ill C 2 requires
differ in the sense that the right-hand side of the first equamore algebra and is left for further study.
tion in Eq.(49) is written as the divergence of a current. This  In contrast, in the 2D hydrodynamical case, the Casimirs
current respects the conservation of all the Casimirs, and ia'e fragile quantitiegbecause they are expressed as function
particular the conservation dfo,dx. This is a consequence Of the vorticity which is not an integral quantity as the mag-
of the assumed:omp|eteaxisymmetry of the System. By netic potential |$ and thus are altered by the Coarse-graining
constrast, the first equation in E¢@1) does not conserve the Procedure. This is true in particular for a special class of
Casimirs, nor the integral af,. This is due to the fact that CasimirsS=-/C(w)dx, calledH functions, constructed with
only the mean field is assumed to be axisymmetric, not th& convex functiorC such thatC”>0 [15,35. This leads to
microfields (or fluctuationg. Therefore the first equation in two very different behaviors of hydrodynamical turbulence
Egs. (49) and (51) will behave differently. In particular, an compared to the hydromagnetic one. First, Hhéunctions
initial axisymmetric magnetic field cannot decay or grow S.¢=-JC(w)dx calculated with the coarse-grained vorticity
following the dynamics of Eqg49). Thus this parametriza- o increase with time, a property similar to thetheorem of
tion does not describe a dynamo mechanism in the usudhermodynamics, while the circulation and energy are ap-
sense, contrary to E@51). It just describes aorganization  proximately conserved(hydrodynamic selective decay
of the magnetic field by turbulence. In fact, E¢9) param-  However, this property is true for an infinite number of func-
etrize a mixing process on the coarse-grained scale, just as fionals and their increase is not necessarily monotGhian
2D turbulence(chaotic mixing or stellar dynamicgphase only be proved tha§ 4(t) =S 4(0), see Ref[35]). Because
mixing) [12]. This observation can be related to Cowling’s of this generalized selective decay, the metaequilibrium state

IV. SUMMARY
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maximizes one of théd functions S 4 (fragile) at fixedE by the Gibbs state and the prior vorticity distributidi#,15.
andI" (robus). For example, Chavanis and Sommdrid)] In that case, it really has the status of a generalized entropy
showed that in the limit of strong mixingpr for Gaussian in the sense of large deviations as its maximizatiatfixed
fluctuations, the quantity to maximize is minus the enstro- circulation and energy determines the optimal coarse-
phy, giving some mathematical basis to @miscid) “mini-  grained vorticity field via the Cramer formula.

mum enstrophy principle.” In this context, the enstrophy of  Our computation can provide interesting insight regarding
the coarse-grained flow decreaseB;,= [w?dx # [w?dx dynamo saturation. It is, however, limited by its neglect of
=I'S9 because part of total enstrophy goes into fine-grainedlissipation and forcing mechanism. It would therefore be
fluctuationsT e =Fy~Ts?: I fact, this property s true for iGre8 il 2 OoEl e e o might not be the rel
anyH fl_Jnctlon: $=fC(a_))d_x¢fC(w)dx=Sc,g,_ T_herefore the evant quantity anymore, but rather the turbulent transport, or
H function that is maximized at metaequilibriumnsnuni- o entropy productiofi37].

versal (it is not necessarily the enstrophgnd can take a

wide diversity of forms as discussed by Chavatis,16. APPENDIX: CURL OPERATORS

Due to their resemblance with entropy functionélsey in-

crease with time, one is maximum at metaequilibrium with  Following Jordan and Turkingtofi7], we define

fixed robust constraints,), and because they generally dif- curlB=(V X B) - e, (A1)
fer from the Boltzmann functiona;=-fw In wdx, the H
functions are sometimes called “generalized entrogi&5}. Curl A= V X (Aey)

However, this is only aranalogywith thermodynamics be-

cause they cannot be obtained from a combinatorial analysfor any vectorB and scalaiA. It is straightforward to show
and none of them is singled out by the Euler equatimon-  that we have the following relations:

universality [36]. From the statistical mechanics point of

view, the relevant mixing entropy p] is the Boltzmann en- curl Curl (—)
tropy (for an ensemble of levelsbut there is an infinite

number of Casimir invarianté€depending on the microscale
fields) to take into account when deriving the Gibbs state.
Consequently, the shape of the fluctuations is not universal.
This is why theH function that is maximized at metaequi- i P . , i
librium is also nonuniversal. However, if the distribution of S€tiNgA=Curl=B" and curlB=A" in the last identity, we
fluctuations is imposed by some external mechariem., a  9€t

= —TAA, (A2)

fAcurI de=fCurI A - Bdx. (A3)

small-scale forcingas suggested by Ellist al. [14], the
functionalq w] is now a well-determined functional selected J Curl* B’A’dx :f B’ -curl " A’dx. (A4)
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