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We present strategies based upon optimization principles in the case of the axisymmetric equations of
magnetohydrodynamicssMHDd. We derive the equilibrium state by using a minimum energy principle under
the constraints of the MHD axisymmetric equations. We also propose a numerical algorithm based on a
maximum energy dissipation principle to compute in a consistent way the nonlinearly dynamically stable
equilibrium states. Then, we develop the statistical mechanics of such flows and recover the same equilibrium
states giving a justification of the minimum energy principle. We find that fluctuations obey a Gaussian shape
and we make the link between the conservation of the Casimirs on the coarse-grained scale and the process of
energy dissipation. We contrast these results with those of two-dimensional hydrodynamical turbulence where
the equilibrium state maximizes aH function at fixed energy and circulation and where the fluctuations are
nonuniversal.
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I. INTRODUCTION

The recent success of two experimental fluid dynamos
f1,2g has renewed the interest in the mechanism of dynamo
saturation, and thus of equilibrium configurations in magne-
tohydrodynamicssMHDd. At the present time, there is no
general theory to tackle this problem, besides dimensional
theory. For example, in a conducting fluid with typical ve-
locity V, density r, Reynolds number Re, and magnetic
Prandtl number Pm, the typical level of magnetic field
reached at saturation is necessarilyf3g

B2 = morV2fsRe,Pmd, s1d

wheref is a priori an arbitrary function of Re and Pm. Many
numerical simulationsf4g lead to f =1, i.e., equipartition be-
tween the magnetic and turbulent energy. This is therefore
often taken as a working tool in astrophysical or geophysical
application. However, this result is far from applying to any
saturated dynamo. Moreover, it does not give any informa-
tion about possible anisotropy of the saturated field. It would
therefore be interesting to build robust algorithms to derive
the functionf. By robust, we mean algorithms which depend
on characteristic global quantities of the systemslike total
energyd but not necessarily on small-scale dissipation, or
boundary conditions.

An interesting candidate in this regard is provided by sta-
tistical mechanics. In the case of pure fluid mechanics, sta-
tistical mechanics has mainly been developed within the
frame of Euler equation for a two-dimensional perfect fluid.
Onsagerf5g used a Hamiltonian model of point vortices.
Within this framework, two-dimensionals2Dd turbulence is a
state of negative temperature leading to the coalescence of
vortices of the same signf6g. Further improvement was pro-

vided by Robert and Sommeriaf7g and Miller et al. f8g who
independently introduced a discretization of the vorticity in a
certain number of levels to account for the continuous nature
of vorticity. Using the maximum entropy formalism of sta-
tistical mechanicsf9g, it is then possible to give the shape of
the smetadequilibrium solution of Euler’s equation as well as
the fine-grained fluctuations around itf10g. This is similar to
Lynden-Bell’s theory of violent relaxationf11g in stellar dy-
namicsssee Chavanisf12g for a description of the analogy
between 2D vortices and stellar systemsd. The predictive
power of the statistical theory is, however, limited by the
existence of an infinite number of constants, the Casimirs,
which appears due to the particle-relabeling symmetryf13g:
when going from the Lagrangian formulationsor Hamil-
tonian which is the most relevant approach from the statisti-
cal mechanics point of viewd to the Eulerian oneswhich is
the simplest formulation from the fluid mechanics point of
viewd, the memory from the initial positions of the fluid par-
ticles is lost and the particle can be labeled in many ways.
From Noether’s theorem, this invariance is associated to the
vorticity conservation and a Casimir is the integral of any
function of the vorticity. The existence of this infinite set of
constants precludes the finding of a universal distribution of
fluctuations. In addition, the metaequilibrium state strongly
depends on thedetailsof the initial condition, not simply on
the robust constraints such as circulation and energy. In cer-
tain occasions, for instance when the flow is forced at small
scales, it may be more relevant to fix a prior distribution of
vorticity fluctuations instead of the Casimirsf14g. Then, the
coarse-grained flow maximizes a “generalized” entropy func-
tional determined by the prior distribution of vorticity
f15,16g. This approach may be particularly useful in the case
of complex flows when there is a balance between forcing
and dissipation at small scales. The situation is quite differ-
ent in the case of MHD flows. The statistical mechanics of
MHD flows has been recently explored by Jordan and Turk-
ington f17g in two dimensions. In contrast with nonmagne-*Electronic address: nicolas.leprovost@cea.fr
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tized 2D hydrodynamics they obtained auniversalGaussian
shape for the fluctuations. This comes from the fact that the
Casimirs in the MHD case are integral quantities of the
primitive velocity and magnetic fields and thus, in the con-
tinuum limit, have vanishing fluctuations. Therefore they do
not alter the Gaussian distribution of fluctuations which is
due to the quadratic nature of energy.

The pure 2D situation, however, seldom applies to astro-
physical or geophysical flows. In this respect, it is interesting
to develop statistical mechanics of systems closer to natural
situations, albeit sufficiently simple so that the already well
tested recipes of statistical mechanics apply. These require-
ments are met by flows with axial symmetry. Most natural
objects are rotating, selecting this peculiar symmetry. More-
over, upon shifting from 2D to axisymmetric flows, one
mainly shifts from a translation invariance along one axis,
toward a rotation invariance along one axis. Apart from im-
portant physical consequences which need to be taken into
accountsfor example, conservation of angular momentum
instead of vorticity or momentum, curvature termsd, this in-
duces a similarity between the two systems which enables a
natural adaptation of the 2D case to the axisymmetric case.
This is shown in the present paper, where we recover the
Gaussian shape of the fluctuations and make the link be-
tween the conservation of the Casimirs on the coarse-grained
scale and the process of energy dissipation.

In the first part of the paper, we study the equilibrium
shape by using a minimum energy principle under the con-
straints of the MHD axisymmetric equations. We also pro-
pose a numerical algorithm based on a maximum energy
dissipation principle to compute in a consistent way the equi-
librium states. This is similar to the relaxation equation pro-
posed by Chavanisf15,16g in 2D hydrodynamics to construct
stable stationary solutions of the Euler equation by maximiz-
ing the production of aH function while conserving the ro-
bust constraintssenergy, circulation,…d. Then, we develop
the statistical mechanics of such flows and recover these
equilibrium states, thereby providing a physical justification
for the minimum energy principle.

II. MHD FLOWS WITH AXIAL SYMMETRY

A. Equations and notations

Consider the ideal incompressible MHD equations:

]tU + sU · = dU = −
1

r
= P + s= 3 Bd 3 B,

]tB + sU · = dB = sB · = dU, s2d

whereU is the fluid velocity,P is the pressure,Îrm0B is the
magnetic field, andr is the sconstantd fluid density. In the
axisymmetric case we consider, it is convenient to introduce
the poloidal/toroidal decomposition for the fieldsU andB:

U = Up + Ut = Up + Ueu, s3d

B = Bp + Bt = = 3 sAeud + Beu,

whereA =Ap+Aeu is the potential vector. This decomposi-
tion will be used in our statistical mechanics approach.

When considering energy methods, we shall introduce al-
ternate fields, built upon the poloidal and toroidal decompo-
sition. They aresu=rU, sb=rA, ju=v / r, andjb=B/ r, where
v is the toroidal part of the vorticity field. In these variables,
the ideal incompressible MHD equationss2d become, in the
axisymmetric approximation, a set of four scalar equations:

]tsb + hc,sbj = 0, s4d

]tjb + hc,jbj = Hsb,
su

2y
J ,

]tsu + hc,suj = hsb,2yjbj,

]tju + hc,juj = ]zS su
2

4y2 − jb
2D − hsb,D*sbj,

where the fields are function of the axial coordinatez and the
modified radial coordinatey=r2/2 andc is a stream func-
tion: Up= = 3 sc / reud. We have introduced a Poisson
Bracket: hf ,gj=]yf]zg−]zf]yg. We also defined a pseudo-
Laplacian in the new coordinates:

D* =
]2

]y2 +
1

2y

]2

]z2 . s5d

Following Jordan and Turkingtonf17g, we will make an in-
tensive use of the operatorssfor more details, see the Appen-
dixd: curl which gives the toroidal part of the curl of any
vector andCurl which takes a toroidal field as argument and
returns the poloidal part of the curl. Ifj =curl B is the toroi-
dal part of the current andc=r Curl−1sUpd, the following
relations hold:

ju = − D*c and j /r = − D*sb. s6d

Under the shapes4d, the ideal axisymmetric MHD equations
of motion lead to the immediate identification ofsb=rA as a
conserved quantity associated to axial symmetry. In the
MHD case, it is thus the magnetic potential which plays the
role of vorticity in the hydrodynamical case. The Casimirs
will thus be functions of this conserved quantity as we now
show.

B. Conservation laws

1. General case

The whole set of conservation laws of the axisymmetric
ideal MHD equations have been derived by Woltjerf18g:

E =
1

2
E Hjuc − sbD*sb +

su
2

2y
+ 2yjb

2Jdydz. s7d

Hm = 2E jbNssbddydz,

Hc =E hFssbdju + sujbF8ssbdjdydz,

I =E Cssbddydz,
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L =E suGssbddydz,

whereC, N, F, andG are arbitrary functions. One can check
that these integrals are indeed constants of motion by using
Eq. s4d and the following boundary conditions:sb=su=ju
=jb=0 on the domain frontier. To prove the constancy of the
third integral, one has to assume thatFs0d=0. The reader,
familiar with the three “classical invariants,” namely, the en-
ergy, the magnetic helicity and the cross helicity, may be
surprised to see here five setssfour of them infinited of con-
stants of motion. First let us argue about the appearance of
the two families which are not classicaly taken into account.
As stated above, the CasimirsI appear because of the mag-
netic potential conservation which is itself linked with the
particle-relabeling symmetryf13g. On the other hand, the
angular momentum conservationslast line withG=1d is con-
served because of the axial symmetry. Second, one can easily
see that ifeHssu,ju,jbddydz is a conserved quantity, then
for every F, eHssu,ju,jbdFssbddydz is also a conserved
quantity because of the conservation ofsb. Therefore the
introduction of the axial symmetry transforms the usual in-
variants into families of invariants. The interpretation of
these integrals of motion is easier when considering a special
case, introduced by Chandrasekharf19g.

2. Chandrasekhar model

The conservation laws take a simpler shape when one
considers only linear and quadratic conservation laws, such
that Nssbd=Fssbd=Gssbd=sb and Nssbd=Gssbd=1. The
caseFssbd=1 is forbidden by the requirement thatF should
vanish at the originssee aboved. In that case, the set of con-
served quantities can be split in two families. The first one is
made up with conserved quantities of the ideal MHD system,
irrespective of the geometry:

Hm = 2E jbsbdydz=E A ·Bdx = 2E ABdx, s8d

Hc =E hsbju + sujbjdydz=E U ·Bdx,

E =
1

2
E Hjuc − sbD*sb +

su
2

2y
+ 2yjb

2Jdydz

=
1

2
E sU2 + B2ddx,

whereHm is the magnetic helicity,Hc is the cross helicity,
andE is the total energy. Note that due to the Lorentz force,
the kinetic helicity is not conserved, unlike in the pure hy-
drodynamical case. The other family of conserved quantities
is made of the particular integrals of motion which appear
due toaxisymmetry:

I =E Cssbddydz=E CsrAddx, s9d

Hm8 = 2E jbdydz=E B

r
dx,

L =E suGssbddydz=E r2UBdx,

L8 =E sudydz=E rUdx.

Apart from the angular momentumL8, it is difficult to give
any physical interpretation for the other quantities. The class
of invariant I is called the Casimirs of the systemsif one
defines a noncanonical bracket for the Hamiltonian system,
they commute, in the bracket sense, will all other function-
alsd. The conservation laws found by Woltjer are mere gen-
eralizations of these quantities.

C. Formal nonlinear dynamical stability

1. General case

Following Woltjerf18g, we show that the extremization of
energy at fixedI, Hm, Hc, andL determines the general form
of stationary solutions of the MHD equations. We argue that
the solutions thatminimize the energy are nonlinearly dy-
namically stable for the inviscid equations.

To make the minimization, we first note that each integral
is equivalent to an infinite set of constraints. Following
Woltjer, we introduce a complete set of functions and label
these functions and the corresponding integrals with an index
n. Then, introducing Lagrange multipliers for each con-
straint, to first order, the variational problem takes the form

dE + o
n=1

+`

hasnddI snd + mm
snddHm

snd + mc
snddHc

snd + gsnddLsndj = 0.

s10d

Taking the variations onsb, jb, su, andju, we find

D*sb = − F8ssbdD*c + F9ssbdsujb + G8ssbdsu

+ 2N8ssbdjb + C8ssbd, s11d

2yjb = − 2Nssbd − F8ssbdsu,

su

2y
= − F8ssbdjb − Gssbd,

c = − Fssbd,

where we have setFssbd=on=0
+` mc

sndFnssbd and similar nota-
tions for the other functions. This is the general solution of
the incompressible axisymmetric ideal MHD problemf18g.
In the general case, it is possible to express the three fieldsu,
ju, andjb in terms ofsb. Then the first equation of the above
system leads a partial differential equation forsb to be
solved to find the equilibrium distribution. Note that the ex-
tremization of the “free energy”J=E+aI +mmHm+mcHc
+gL yields the same equations as Eq.s11d. Differences will
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appear on second-order variations as we discuss below.
If we consider a purely magnetic case by takingF=G

=0, we get

D*sb = C8ssbd − 2
NssbdN8ssbd

y
,

jb = −
Nssbd

y
, U = 0. s12d

This equation is obtained by minimizing the energyE
= 1

2 esU2+B2ddx while conserving the generalized magnetic
helicity Hm=2esB/ rdNsrAddx and the Casimirs I
=eCsrAddx. It can be therefore seen as a Grad-Shafranov
equation sp. 30 in Ref. f20gd. The LaplacianD*8 used in
Biskamp’s book is related to ours by the following relation:
D*8=r2D* . If we take, furthermore,Nssbd=mmsb and Cssbd
=Ksb we get

D*sb = K − 2mm
2 sb

y
,

jb = − mm
sb

y
, U = 0. s13d

With K=0, we obtain the so-called Beltrami equation. It
minimizes the energyE= 1

2 esU2+B2ddx while conserving
the magnetic helicityHm=eB ·Adx. This variational prin-
ciple was suggested by Taylorf21g. In vectorial form it leads
to =3B=−2mmB. If we account also for the conservation of
I0=erAdx, we get Eq.s13d.

2. Chandrasekhar model

In the Chandrasekhar model, the arbitrary functions are at
most linear functions ofsb: Nssbd=mmsb+mm8 , Fssbd
=mcsb and Gssbd=gsb+g8. Thus the stationary profile in
the Chandrasekhar model is given by

D*sb = − mcD*c + gsu + 2mmjb + C8ssbd, s14d

2yjb = − 2mmsb − 2mm8 − mcsu,

su

2y
= − mcjb − gsb − g8,

c = − mcsb.

From the previous equations, we obtain

2ys1 − mc
2djb = 2sgmcy − mmdsb + 2mcg8y − 2mm8 , s15d

s1 − mc
2dsu = 2smcmm − gydsb + 2mcmm8 − 2g8y,

c = − mcsb,

wheresb is given by the differential equation:

s1 − mc
2d2D*sb = Fssbd − S2mm

2

y
+ 2g2yDsb − 2gg8y

−
2mmmm8

y
. s16d

These expressions can be used to prove that these fields are
stationary solutions of the axisymmetric MHD equations. We
now turn to the stability problem. Since the functionalJ=E
+aI +mmHm+mcHc+gL is conserved by the ideal dynamics,
a minimum ofJ will be nonlinearly dynamically stable in the
formal sense of Holmet al. f22g. Note that this implication is
not trivial because the system under study is dimensionally
infinite. We admit that their analysis can be generalized to
the present context. Since the integrals which appear in the
functional J are conserved individually, a minimum of en-
ergy at fixed other constraints also determines a nonlinearly
dynamically stable stationary solution of the MHD equa-
tions. This second stability criterion is more refined than the
first sit includes itd. We shall not prove these results, nor
write the second order variations, here. We refer to Elliset
al. f14g for a precise discussion in the related context of 2D
hydrodynamical flows.

If we ignore the conservation of angular momentumsg
=g8=0d and the conservation ofHm8 smm8 =0d, we get

s1 − mc
2d2D*sb = Fssbd −

2mm
2

y
sb,

jb = −
mm

1 − mc
2

sb

y
, U = − mcB. s17d

In that case, the velocity and the magnetic field are aligned
ssee also Sec. III C 1d. This solution is obtained by minimiz-
ing the energyE= 1

2 esU2+B2ddx while conserving the mag-
netic helicity Hm=eA ·Bdx, the cross helicityHc=eU ·Bdx
and the CasimirsI =eCsrAddx. The alignment ofU and B
can be obtained by minimizing the energy at fixed cross he-
licity. This variational principle was suggested by Matthaeus
and Montgomeryf23g.

D. Numerical algorithm to construct stable equilibria

1. General case

It is usually difficult to solve directly the system of Eqs.
s15d ands16d and make sure that they ensure a stable station-
ary solution of the MHD equations. Instead, we shall propose
a set of relaxation equations which continuously decreases
the energy while conserving any other integral of motion.
This allows construction of solutions of the systems15d and
s16d which are energy minima and respect the other con-
straints. A physical justification of this procedure linked to
the dissipation of energy will be given in Sec. III C 1.

Our relaxation equations can be written under the generic
form
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]s

]t
= − = ·Js, s18d

where s stands forsb,jb,su, or ju. Using straightforward
integration by parts, we then get

İ =E Jsb
· = fC8ssbdgdydz, s19d

Ḣm = 2E hJjb
· = fNssbdg + Jsb

· = fN8ssbdjbgjdydz,

Ḣc =E hJju
· = fFssbdg + Jsb

· = fF8ssbdju + F9ssbdsujbg

+ Jsu
· = fF8ssbdjbg + Jjb

· = fF8ssbdsugjdydz,

L̇ =E hJsu
· = fGssbdg + Jsb

· = fG8ssbdsugjdydz,

Ė =E HJju
· = c − Jsb

· = sD*sbd + Jsu
· = Ssu

2y
D

+ Jjb
· = s2yjbdJdydz.

To construct the optimal currents, we rely on a procedure of

maximization of the rate of dissipation of energyĖ. This is
similar to the maximization of the production of aH function
used in Refs.f15,16g in 2D hydrodynamics. We thus maxi-

mize Ė given the conservation ofİ =Ḣm=Ḣc= L̇=0. Such
maximization can only have solution for bounded currentssif
not, the fastest evolution is for infinite currentsd. Therefore
we also impose a bound onJs

2 where, as before,s stands for
sb, jb, su, ju.

Writing the variational problem under the form

dĖ + o
n=1

+`

hasndstddİ snd + mm
sndstddḢm

snd + mc
sndstddḢc

snd

+ gsndstddL̇sndj + o
s

1

Ds

dSJs
2

2
D = 0 s20d

and taking variations onJsb
,Jjb

,Jsu
,Jju

, we obtain the opti-
mal currents. Inserting their expressions in the relaxation
equationss18d, we get

]sb

]t
= = · hDsb

= f− D*sb + C8ssb,td + 2jbN8ssb,td

+ juF8ssb,td + sujbF9ssb,td + G8ssb,tdsugj, s21d

]jb

]t
= = · hDjb

= f2yjb + 2Nssb,td + F8ssb,tdsugj,

]su

]t
= = ·HDsu

= Fsu

2y
+ jbF8ssb,td + Gssb,tdGJ ,

]ju

]t
= = · hDju

= fc + Fssb,tdgj,

where we have setFssb,td=on=0
+` mc

sndstdFnssbd and similar
notations for the other functions. The time evolution of the
Lagrange multipliersmc

sndstd, etc., are obtained by substitut-

ing the optimal currents in the constraintsḢc
snd=0, etc., and

solving the resulting set of algebraic equations. Using the

expression of the optimal currents and the condition thatİ

=Ḣm=Ḣc= L̇=0, we can show that

Ė = −E H Jju

2

Dju

+
Jsb

2

Dsb

+
Jsu

2

Dsu

+
Jjb

2

Djb

Jdydzø 0, s22d

provided that the diffusion currentsDju
, Dsb

, Dsu
, and Djb

are positive. Thus the energy decreases until all the currents
vanish. In that case, we obtain the static equationss11d. In
addition, this numerical algorithm guarantees that only en-
ergyminimaare reached; maxima or saddle points of energy
are linearly unstablef15g. Note that if we fix the Lagrange
multipliers instead of the constraints, the foregoing relax-
ation equations lead to a stationary state which minimizes the
“free energy”J. Then, as stated above, the constructed solu-
tions will be nonlinearly dynamical stable solutions of the
MHD set of equations. However, forbidding the Lagrange
multipliers to depend on time, we may “miss” some stable
solutions of the MHD equations. Indeed, we know that
minima of the free energyare nonlinearly stable solutions of
the problem but we do not know if they are the only ones:
some solutions can be minima ofE at fixedI, Hm, Hc, andL
while they are not minima ofJ=E+aI +mmHm+mcHc+gL.
This is similar to a situation of ensemble inequivalence in
thermodynamics; see Refs.f14,24g.

2. Chandrasekhar model

In the Chandrasekhar modelswith mm8 =g8=0d, the previ-
ous equations can be simplified. Furthermore, as the equilib-
rium solution does not depend on the particular value of the
diffusion coefficientssthese are only multiplicative factors of
the optimal currentsd, we set for simplicityDju

=Dsb
=Dsu

=Djb
=1. The relaxation equations then reduce to

]sb

]t
= Dh− D*sb + C8ssb,td + 2mmstdjb + mcstdju + gstdsuj,

s23d

]jb

]t
= Dh2yjb + 2mmstdsb + mcstdsuj,

]su

]t
= DHsu

2y
+ mcstdjb + gstdsbJ ,

]ju

]t
= Dhc + mcstdsbj,

where the Lagrange multipliers evolve in time so as to con-
serve the constraintss19d.
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These equations are the MHD counterpart of the relax-
ation equations proposed by Chavanisf15,16g for 2D hydro-
dynamical flows described by the Euler equation. In this con-
text, a nonlinearly dynamically stable stationary solution of
the Euler equation maximizes aH function at fixed energy
and circulation. A justification of this procedure, linked to the
increase ofH functions on the coarse-grained scale, will be
further discussed in Sec. IV and compared with the MHD
case.

III. STATISTICAL MECHANICS OF AXISYMMETRIC
FLOWS

In the previous section, we obtained general equilibrium
velocity and magnetic fieldprofiles through minimization of
the energy under constraints. In the present section, we de-
rive velocity and magnetic fielddistribution using a thermo-
dynamical approach, based upon a statistical mechanics of
axisymmetric MHD flows. As we later check, the distribu-
tion we find are such that their mean fields obey the equilib-
rium profiles found by energy minimization. For simplicity,
we focus here on the Chandrasekhar model.

A. Definitions and formalism

Following Miller f8g, Robertf7g, and Jordan and Turking-
ton f17g, we introduce a coarse-graining procedure through
the consideration of a length scale under which the details of
the fields are irrelevant. The microstates are defined in terms
of all the microscopic possible fieldsusxd andbsxd. On this
phase space, we define the local distribution of velocity and
magnetic field rsx ,u ,bd. This forms a macrostate. The
coarse-grained fieldsdenoted by a bard is determined by the
following relations:

Ūsxd =E ursx,u,bddudb, s24d

B̄sxd =E brsx,u,bddudb.

We introduce the mixing entropy

Sfrg = −E rsx,u,bdlnfrsx,u,bdgdxdudb, s25d

which has the form of Shanon’s entropy in information
theory f9,25g. It is proportional to the logarithm of disorder,
where the disorder is the number of microstates consistent
with a given macrostatersx ,u ,bd. The most probable mac-
rostater*sx ,u ,bd maximizes the entropy subject to the con-
straints. The mathematical ground for such a procedure is
that an overwhelming majority of all the possible microstates
with the correct values for the constants of motion will be
close to this statessee Ref.f7g for a precise definition of the
neighborhood of a macrostate and the proof of this concen-
tration propertyd. Note that this approach gives not only the

coarse-grained fieldsŪ ,B̄d but also the fluctuations around it
through the distributionrsx ,u ,bd.

Each conserved quantity has a numerical value which can
be calculated given the initial condition, or from the detailed
knowledge of the fine-grained fields. The integrals calculated
with the coarse-grained quantities are not necessarily con-
served because part of the integral of motion can go into
fine-grained fluctuationssas we shall see, this is the case for
the energy in MHD flowsd. This induces a distinction be-
tween two classes of conserved quantities, according to their
behavior through coarse graining. Those which are not af-
fected are called robust, whereas the other one are called
fragile.

B. Constraints

In this section, it is convenient to come back to the origi-
nal velocity and magnetic fields. The constraints are the
coarse-grained values of the conserved quantitiess8d. The
key point, as noted by Jordan and Turkingtonf17g, is that the
quantity coming from a spatial integration of one of the
fieldsu or b is smooth. In our case, it amounts to neglecting
the fluctuations ofA which is spatially integrated fromB and

write A=Ā. Thus the coarse-grained values of the conserved
quantities are given by

Ī =E CsrĀddx, s26d

H̄m = 2E ĀB̄dx,

H̄c =E u ·brsx,u,bddxdudb,

Ē =
1

2
E su2 + b2drsr ,u,bddxdudb,

H̄m8 = 2E B̄

r
dx,

L̄ =E ĀŪr2dx,

L̄8 =E Ūrdx.

The constraintĪ is the Casimir, connected to the conservation
of sb along the motions. In the present case, it is a robust
quantity as it is conserved on the coarse-grained scale. As

stated previously, the quantitiesH̄m, H̄c, andĒ are the mean
values of the usual quadratic invariants of ideal MHD,
namely the magnetic helicity, the cross helicity, and the en-

ergy. On the contrary, the quantitiesH̄m8 , L̄, and L̄8 are spe-
cific to axisymmetric systems. Because these last three con-
servation laws are usually disregarded in classical MHD
theory, it is interesting in the sequel to separate the study in

two cases, according to which the conservation ofH̄m8 , L̄, and
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L̄8 is physically relevants“rotating case”d or is not physically
relevants“classical case”d.

C. Gibbs state

1. Classical case

The MHD equations develop a mixing process leading to
a metaequilibrium state on the coarse-grained scale. It is ob-
tained by maximizing the mixing entropySfrg with respect

to the distributionr at fixed Ī, H̄m, H̄c, and Ē swe omit the
bars in the followingd. We have

dS= −E s1 + ln rddrdxdudb, s27d

dHc =E u ·bdrdxdudb,

dE =
1

2
E su2 + b2ddrdxdudb.

The variation of the magnetic helicity and the Casimirs is

more tedious because they involve the coarse-grained fieldĀ.
For the magnetic helicity, we have

dHm = 2E sdĀB̄ + ĀdB̄ddx. s28d

Now, using an integration by parts, it is straightforward to
show that

E dABdx =E dBP ·APdx. s29d

Therefore

dHm = 2E sdB̄P · ĀP + ĀdB̄ddx = 2E Ā · dB̄dx

= 2E Ā ·bdrdxdudb. s30d

Regarding the variation of the Casimirs, we find

dI =E C8srĀdrdĀdx =E C8srĀdr Curl−1 B̄Pdx

=E curl−1frC8srĀdg · dB̄Pdx, s31d

or

dI =E curl−1frC8srĀdg ·bPdrdxdudb. s32d

Writing the variational principle in the form

dS− bdE − mmdHm − mcdHc − o
n=1

+`

asnddI snd = 0, s33d

we find that

1 + ln r = −
b

2
su2 + b2d − 2mmĀ ·b − mcu ·b

− curl−1frC8srAdg ·bP. s34d

It is appropriate to writeu=Ū+u8 and b=B̄+b8 where the
first term denotes the coarse-grained field. Then, Eq.s34d can
be rewritten

1 + ln r = −
b

2
su82 + b82d − mcu8 ·b8 − mmĀ · B̄ −

mc

2
Ū · B̄

− S Ū

2
+ u8D · fbŪ + mcB̄g − S B̄

2
+ b8D

· fbB̄ + 2mmĀ + mcŪ + curl−1frC8srAdgg. s35d

Hence the fluctuations are Gaussian:

r =
1

Z
expH−

b

2
su82 + b82d − mcu8 ·b8J

=
1

Z
expH1

2o
i,j

xiAijxjJ , s36d

where we defined a six-dimensional vector:xi
=su18 ,u28 ,u38 ,b18 ,b28 ,b38d. The mean field is given by

bU + mcB = 0, s37d

bB + 2mmA + mcU = 0,

bBP + 2mmAP + mcUP + curl−1frC8srAdg = 0.

Taking the curl of these relations and using curlBP= j ,
curl UP=v, and curlAP=B, we recover the equilibrium dis-
tribution s14d with g=g8=mm8 =0. Therefore, in this classical
case, the equilibrium profiles are such that mean velocity and
mean magnetic field are aligned. This is a well-known fea-
ture of turbulent MHD, which has been observed in the solar
wind swherev< ±Bd. It has been linked with a principle of
minimum energy at constant cross helicityssee Chap. 7.3 of
Ref. f20g and references thereind. This feature is also present
in numerical simulation of decaying 2D MHD turbulence,
where the current and the vorticity are seen to be very much
equalf26g. This can therefore be seen as the mere outcome
of conservation of quadratic integral of motions, and may
provide an interesting general rule about dynamo saturation
in systems where these quadratic constraints are dominant.

Using the Gaussian shape for the fluctuations, it is quite
easy to derive the mean properties of the fluctuations. To do
so, we will make use of the following standard resultsf27g:

Z = s2pd3ÎdetfAg = s2pd3fb2 − mc
2g3/2, kxixjl = sA−1di j .

s38d

Then, it is easy to show that part of the energy is going into
the fluctuations and that there is equipartition between the
fluctuating parts of the magnetic energy and of the kinetic
energy:
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ku82l = kb82l =
3b

b2 − mc
2 . s39d

One can also calculate the quantity of cross helicity going
into the fluctuations:

ku8 ·b8l = −
3mc

b2 − mc
2 . s40d

One should notice that there is no net magnetic helicity in the
fluctuations becauseA is strictly conserved:ka8 ·b8l=0.
Then, the fractions of magnetic energy, cross helicity, and
kinetic energy going into the fluctuations are

kb82l

E B̄2dx

=
ku8 ·b8l

E Ū · B̄dx

=
3b

b2 − mc
2M−1, s41d

ku82l

E Ū2dx

=
b2

mc
2

3b

b2 − mc
2M−1,

where M=eB̄2dx is the magnetic energy of the coarse-
grained field. The first equation shows that there is an equal
fraction of magnetic energy and cross helicity into the fluc-
tuations while the positivity of the magnetic energy requires
b2.mc

2. Using this inequality and the second line, we see
that the fraction of kinetic energy going into the fluctuations
is then bigger than that of the magnetic energy and cross
helicity. This gives some mathematical ground to the energy
minimization procedure we used in Sec. II C.

2. Rotating case

The situation changes when the other constants of motion
are taken into account. We have

dHm8 = 2E b

r
drdxdudb, s42d

dL8 =E urdrdxdudb.

On the other hand,

dL =E sdĀŪ + ĀdŪdr2dx =E sŪ curl−1 dB̄P + ĀdŪdr2dx

=E scurl−1sr2Ūd · dB̄P + ĀdŪr2ddx

=E scurl−1sr2Ūd ·bP + Āur2ddrdxdudb. s43d

Adding Lagrange multipliers −mm8 , −g, and −g8 for Hm8 , L,
andL8, respectively, we find that the expressions34d is mul-
tiplied by

expH− 2mm8
b

r
− g8ru − gfcurl−1sr2Ūd ·bP + Āur2gJ .

s44d

The distribution of fluctuations is then still Gaussian and
given by Eq.s36d but now the mean-field equations are

bUP + mcBP = 0, s45d

bU + mcB + g8r + gAr2 = 0,

bB + 2mmA + mcU +
2mm8

r
= 0,

bBP + 2mmAP + mcUP + curl−1frC8srAdg + g curl−1sr2Ud

= 0.

Taking the curl of the vectorial relations, we get the system
s14d.

3. Application to the magnetic field of stars

Therefore the relation between the velocity and the mag-
netic field is not linear anymore, when taking into account
additional constants of motion. The linearity is only valid for
the poloidal component:BP~UP. The toroidal component
obeys

bSU +
g8

b
rD = − mcB − gAr2. s46d

We can interpreteU+g8 /br as the relative velocity around a
solid rotationV=−g8 /b. Indeed,g8 is the Lagrange multi-
plier for the angular momentum constraint. The nontrivial
term responsible for the departure from linearity is −gAr2.
Thus the breaking of the proportionality between the velocity
and the magnetic field can be attributed to the conservation
of the angular momentum in the Chandrasekhar model. This
is an interesting feature because this conservation rule is
likely to be more relevant in rapidly rotating objects. This
may explain the dynamo saturation in rotating stars, where
linearity between magnetic and velocity field is observed for
slowly rotating stars and is broken for rotator faster than a
certain limit. To illustrate such a behavior, we used astro-
physical dataf28g giving the bolometric luminosityLb, the
periodP, the massM, and the color indexB−V for a given
set of starssof the dwarf typed. From this data, an estimate of
the toroidal parts of the magnetic and velocity fields are as
follows.

For the magnetic field, it is done in two steps:
1. From the value of the color indexsor equivalently the

temperatured, we use the Hertzsprung-Russell Diagram to fit
the value of the star radiusR in order to obtain the correct
value for the luminosity.

2. Once we know the radius of the star, we use an em-
pirical power lawf29g linking the luminosity with the mag-
netic flux F:
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Lb ~ F1.15, sBR2d1.15 s47d

and thus we calculate the magnetic field from the luminosity.
For the velocity field, we assume that the interior of the star
is close to a solid body rotation and derive the velocity from
the rotation periodP: U~2pR/P. In Fig. 1, we have plotted
the magnetic fieldB versus the velocity fieldsboth quantity
being expressed in units of the corresponding solar valued.
One sees that the magnetic field is a linear function of the
velocity field for the slow rotation rate but saturates for the
higher rotation rate, as predicted by Eq.s46d. Note that the
nonproportionality between velocity and magnetic field can
also be due to additional conserved quantities such as those
considered by Woltjerf18g.

D. Relaxation equations

The previous discussion has shown that the energy of the
coarse-grained field has the tendency to decrease while the
other invariants of the inviscid axisymmetric MHD equations
are approximately conserved. Thus the energy is a fragile
invariant, while the others are robust. Using this observation,
we build up a system of relaxation equations which provide
a small-scale parametrization of axisymmetric MHD turbu-
lence. Coarse graining the axisymmetric MHD equations, we
obtain a system of equations of the form

]ts̄b + hC,s̄bj = − = ·Jsb
, s48d

]tj̄b + hC,j̄bj = Hs̄b,
s̄u

2y
J − = ·Jjb

,

]ts̄u + hC,s̄uj = hs̄b,2yj̄bj − = ·Jsu
,

]tj̄u + hC,j̄uj = ]zS s̄u
2

4y2 − j̄b
2D − hs̄b,D*s̄bj − = ·Jsb

,

where the currents take into account the correlations of the
fine-grained fluctuations. Using a heuristic principle, we pro-
pose to determine the currents so as to maximize the rate of
energy dissipation while conserving the other constraints.
This is similar to the idea of the maximum entropy produc-
tion principle of Robert and Sommeriaf30g in 2D turbulence
stating that the evolution toward equilibrium is such that it
maximizes the entropy creation under the given constraints.
This is equivalent to say that the evolution toward the equi-
librium state is the fastest. The calculation are exactly the
same as in Sec. II D 1 and lead to the system of equations
s21d in the general case and Eq.s23d in the case of the Chan-
drasekhar model with additional advective terms for the
coarse-grained quantities. However, the interpretation of the
new system of equations is different from the previous one:
we obtain here a system of equations for the coarse-grained
variables, the fine-grained ones being parametrized, in the
relaxation currents, in terms of coarse-grained quantities.

If we set the coarsed-grained part of the velocity field to

zero ss̄u= j̄u=c=0d, we get a system of equations

]s̄b

]t
= = · hDsb

= f− D*s̄b + C8ss̄b,td + 2j̄bN8ss̄b,tdgj,

s49d

]j̄b

]t
= = · hDjb

= f2yj̄b + 2Nss̄b,tdgj,

linking the poloidal partss̄bd and the toroidal partsj̄bd of the
magnetic field. This system of equations relaxes toward the
stationary state described by the Grad-Shafranov equation
s12d. Note that we have set thecoarse-grainedpart of the
velocity field to zero. Thus Eqs.s49d describe the organiza-
tion of magnetic field by purelyfluctuatingvelocity field in
the spirit of a “turbulent dynamo.” In this respect, it may be
of interest to stress the analogies and the differences between
the relaxation equationss49d and the mean-field equations of
MHD dynamo. When considering the effect of afluctuating
velocity field sassumed to be isotropicd on the process of
magnetic field generation, see Steenbecket al. f31g, the
equation for the meansor coarse-grainedd magnetic field is
found to be

]tB̄ = = 3 fasB̄dB̄g − = 3 fbsB̄d = 3 sB̄dg. s50d

Assuming that the mean magnetic field is axisymmetric, the
foregoing equation can be rewritten with the scalar variables
as

]s̄b

]t
= 2byD*s̄b + 2ayj̄b, s51d

FIG. 1. Magnetic field of starssof late-type dwarfsd calculated
from their x-ray emission and compared to that of the Sun, vs their
rotation velocity divided by that of the Sun.
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]j̄b

]t
= = ·F b

2y
= s2yj̄bd −

a

2y
= s̄bG .

The first term in the right-hand side is a turbulentsmagneticd
diffusivity whereas the second one is the so-calleda effect
which builds up coarse-grained magnetic field from a fluctu-
ating velocity field. In the case of an axisymmetric mean
magnetic field to which Eqs.s51d apply, the coupling be-

tween the toroidalsj̄bd and poloidalss̄bd part of the magnetic
field is proportional to the coefficienta. In the “kinematic
approximation,” where the effect of the Lorentz force is ne-
glected, the coefficienta is constant and proportional to the
kinetic helicity Hk~u8 ·= 3u8 of the fluctuating velocity
field. In this sense, it is related to purely hydrodynamical
variables. However, taking into account the retroaction of the
magnetic field on the velocity field, Pouquetet al. f32g were
able to write a nonlineara effect as a difference between the
kinetic and the magnetic helicity spectra:a,sHk−Hmd. It is
interesting to note that the second equation in Eq.s49d has a
structure similar to the second equation in Eq.s51d, espe-
cially in the case whereNssbd=mmsb. In that case, the
equivalent of thea parameter is the Lagrange multipliermm
associated to the conservation of magnetic helicity. This is an
important feature that these two systems have in common,
namely the coupling between the poloidal and the toroidal
part of the magnetic field is proportional to a quantity linked
with the magnetic helicity: in Eq.s51d, the a effect can be
expressed in terms of the spectrum of the magnetic helicity
sin the nonlinear regimed whereas in Eq.s49d, mm is the
Lagrange multiplier associated to the conservation of mag-
netic helicity. Our relaxation equations therefore recover the
fact that the equilibrium configuration of the coarse-grained
magnetic field is mainly monitored by the magnetic helicity.
This is due to the fact that magnetic helicity experiences an
inverse cascadesfrom small to large scalesd in MHD turbu-
lence as has been shown by Ref.f33g and as it is evidenced
in our study by the fact that there is no net magnetic helicity
in the fluctuationsssee the end of Sec. III C 1d.

It is also of interest to compare the first equation in Eqs.
s49d and s51d. Despite some analogies, these two equations
differ in the sense that the right-hand side of the first equa-
tion in Eq.s49d is written as the divergence of a current. This
current respects the conservation of all the Casimirs, and in
particular the conservation ofes̄bdx. This is a consequence
of the assumedcompleteaxisymmetry of the system. By
constrast, the first equation in Eq.s51d does not conserve the
Casimirs, nor the integral ofs̄b. This is due to the fact that
only the mean field is assumed to be axisymmetric, not the
microfields sor fluctuationsd. Therefore the first equation in
Eqs. s49d and s51d will behave differently. In particular, an
initial axisymmetric magnetic field cannot decay or grow
following the dynamics of Eqs.s49d. Thus this parametriza-
tion does not describe a dynamo mechanism in the usual
sense, contrary to Eq.s51d. It just describes areorganization
of the magnetic field by turbulence. In fact, Eqs.s49d param-
etrize a mixing process on the coarse-grained scale, just as in
2D turbulenceschaotic mixingd or stellar dynamicssphase
mixingd f12g. This observation can be related to Cowling’s

theorem f34g which precludes an axisymmetric magnetic
field to grow by dynamo action. In Cowling’s theorem, there
is viscosity and the magnetic field finally goes to zero. In our
case, the flow is inviscid and the magnetic field is reorga-
nized by turbulence, without being dissipated. This gives rise
to a coherent state, like the one described by the Grad-
Shafranov equation or by the more general mean-field equa-
tions derived in Sec. III C 1. In the presence of a small vis-
cosity, these coherent structures would be observed during a
long, transient, stage of the dynamics.

IV. SUMMARY

We have developed a statistical theory of axisymmetric
MHD equations generalizing the 2D approach by Jordan and
Turkingtonf17g. We derived the velocity and magnetic field
distribution and established the differential equations deter-
mining the equilibrium profiles for the mean flow. Like in the
2D case, the fluctuations around the mean field are found
Gaussian, a universal feature connected to the conservation
of the Casimirs under the coarse graining together with the
quadratic nature of energy. The equilibrium profiles are char-
acterized by an alignment of the velocity and magnetic field,
which is broken when the angular momentum conservation
is taken into account. The statistical equilibrium profiles are
found to correspond to profiles obtained under minimization
of energy subject to the constraints. Thus, in the MHD case,
in the presence of a coarse grainingsor a small viscosityd, the
energy is dissipated while the helicity, the angular momen-
tum, and the Casimirs are approximately conservedshydro-
magnetic selective decayd. In particular, the energy of the

coarse-grained field decreases:Ē= 1
2 eU2+B2dxÞ 1

2 esŪ2

+B̄2ddx=Ec.g. because part of total energy goes into fine-

grained fluctuationsEfluct=Ē−Ec.g.. Therefore the metaequi-
librium state minimizesEc.g. sfragiled at fixed I, Hm, Hc, and
L srobustd. This can be justified in the “classical case”sSec.
III C 1d where we showed that the fraction of kinetic energy
going into the fluctuating part of the fields was higher than
that of the other quantities, namely the magnetic energy and
the cross helicity. The “rotating case”sSec. III C 2d requires
more algebra and is left for further study.

In contrast, in the 2D hydrodynamical case, the Casimirs
are fragile quantitiessbecause they are expressed as function
of the vorticity which is not an integral quantity as the mag-
netic potential isd and thus are altered by the coarse-graining
procedure. This is true in particular for a special class of
CasimirsS=−eCsvddx, calledH functions, constructed with
a convex functionC such thatC9.0 f15,35g. This leads to
two very different behaviors of hydrodynamical turbulence
compared to the hydromagnetic one. First, theH functions
Sc.g.=−eCsv̄ddx calculated with the coarse-grained vorticity
v̄ increase with time, a property similar to theH theorem of
thermodynamics, while the circulation and energy are ap-
proximately conservedshydrodynamic selective decayd.
However, this property is true for an infinite number of func-
tionals and their increase is not necessarily monotonicsit can
only be proved thatSc.g.stdùSc.g.s0d, see Ref.f35gd. Because
of this generalized selective decay, the metaequilibrium state
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maximizes one of theH functionsSc.g. sfragiled at fixed E
and G srobustd. For example, Chavanis and Sommeriaf10g
showed that in the limit of strong mixingsor for Gaussian
fluctuationsd, the quantity to maximize is minus the enstro-
phy, giving some mathematical basis to ansinviscidd “mini-
mum enstrophy principle.” In this context, the enstrophy of

the coarse-grained flow decreases:Ḡ2=ev2dxÞev̄2dx
=G2

c.g. because part of total enstrophy goes into fine-grained

fluctuationsG fluct=Ḡ2−G2
c.g.. In fact, this property is true for

anyH function: S̄=eCsvddxÞeCsv̄ddx=Sc.g.. Therefore the
H function that is maximized at metaequilibrium isnonuni-
versal sit is not necessarily the enstrophyd and can take a
wide diversity of forms as discussed by Chavanisf15,16g.
Due to their resemblance with entropy functionalssthey in-
crease with time, one is maximum at metaequilibrium with
fixed robust constraints,…d, and because they generally dif-
fer from the Boltzmann functionalSB=−ev ln vdx, the H
functions are sometimes called “generalized entropies”f15g.
However, this is only ananalogywith thermodynamics be-
cause they cannot be obtained from a combinatorial analysis
and none of them is singled out by the Euler equationsnon-
universalityd f36g. From the statistical mechanics point of
view, the relevant mixing entropySfrg is the Boltzmann en-
tropy sfor an ensemble of levelsd, but there is an infinite
number of Casimir invariantssdepending on the microscale
fieldsd to take into account when deriving the Gibbs state.
Consequently, the shape of the fluctuations is not universal.
This is why theH function that is maximized at metaequi-
librium is also nonuniversal. However, if the distribution of
fluctuations is imposed by some external mechanismse.g., a
small-scale forcingd as suggested by Elliset al. f14g, the
functionalSfv̄g is now a well-determined functional selected

by the Gibbs state and the prior vorticity distributionf14,15g.
In that case, it really has the status of a generalized entropy
in the sense of large deviations as its maximizationsat fixed
circulation and energyd determines the optimal coarse-
grained vorticity field via the Cramer formula.

Our computation can provide interesting insight regarding
dynamo saturation. It is, however, limited by its neglect of
dissipation and forcing mechanism. It would therefore be
interesting to generalize this kind of approach to more real-
istic systems. In that case, the entropy might not be the rel-
evant quantity anymore, but rather the turbulent transport, or
the entropy productionf37g.

APPENDIX: CURL OPERATORS

Following Jordan and Turkingtonf17g, we define

curl B = s= 3 Bd ·eu, sA1d

Curl A = = 3 sAeud,

for any vectorB and scalarA. It is straightforward to show
that we have the following relations:

curl Curl SA

r
D = − rD*A, sA2d

E A curl Bdx =E Curl A ·Bdx. sA3d

SettingA=Curl−1 B8 and curlB=A8 in the last identity, we
get

E Curl−1 B8A8dx =E B8 ·curl−1 A8dx. sA4d
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